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Markov random field segmentation
for low frequency active sonar:
further results

R. Laterveer

Executive Summary: Low frequency active sonar has been highlighted by
5 number of NATO nations as an important component of the next generation
of undersea defence systems. The use of low frequencies in a shallow water
environment, however, is known to result in a high false alarm rate due to the
large number of clutter like returns which can overload automatic tracking and
classification algorithms.

The SACLANT Undersea Research Centre is currently investigating techniques
to aid in the reduction of these false alarms without a reduction in detection

probability.

A previous study described an automatic method of image segmentation based
on Markov random field (MRF) modelling to reduce clutter. The method ex-
amines detections over both range and bearing and removes small objects which
do not exhibit the right signature over beams. Separate detections correspond-
ing to one large object are combined to form a single object. Objects too large
to be a submarine can then be removed.

In this report the algorithm is evaluated on additional data. Using Markov
random field segmentation to detect large geophysical features and a small
submarine simultaneously does not improve performance. Markov random field
segmentation could still be used to detect large geophysical objects which can
be removed if their geological position remains unchanged or their size is too
large to be a submarine. This will be examined in future work.
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Markov random field segmentation
for low frequency active sonar:
further results

R. Laterveer

Abstract:

The use of low frequency active sonar in shallow water leads to large numbers
of clutter detections.

This high false alarm rate can overload automatic tracking and classification
algorithms. Traditional detection algorithms operate on each beam output
individually searching for targets at all ranges. However, the target echo and
bottom features may extend over several beams, either because a reflector is
extended over space or because of the sidelobe structure of the beamformer.
This suggests the association of detections over bearing, e.g. apply image
processing to the range-bearing sonar data.

A previous study described an automatic method of image segmentation based
on a Markov random field (MRF) model to reduce clutter. The segmentation
is treated as a labelling problem, assigning to each range-bearing cell either a
! target or background label, removing small objects which do not exhibit the
correct signature over beams. Separate detections corresponding to one large
reflector are combined and removed if they are too large to be a submarine .

In this report, the algorithm is evaluated on additional data. On a single
ping basis the MRF segmentation shows slightly lower detection performance
at the same number of false alarm objects as the Page test detector. MRF
segmentation still shows potential for fixed feature removal over multiple pings
and will be studied in the feature.

Keywords:  clutter reduction o detection o classification o segmentation o
low frequency active sonar o Markov random fields o image processing
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Introduction

Low frequency active sonar is an important component of the next generation of un-
dersea defence systems. The use of low frequencies in a shallow water environment,
however, is known to result in a high false alarm rate due to the large number of
clutter like returns. The SACLANT Undersea Research Centre is investigating auto-
matic techniques to reduce false alarms without a reduction in detection probability.

Target detection is usually not a problem, generally the signal to noise ratio (SNR)
is sufficient. The large number of false detections makes it difficult to find the target.
As the next stage of processing is target/non-target classification using algorithms
for tracking and fixed-feature removal, the large number of false targets makes the
computational load of such an approach prohibitive.

Automatic processing becomes especially important for broadband sonar. Due to the
higher resolution of broadband sonar there is more information, making it difficult
or even impossible to present it all to a sonar operator.

The separation of regions of extended background reverberation is perceived to be a
crucial first step in categorisation. A segmentation algorithm may be considered as
a first stage classifier which allows the estimation of size and position of extended
objects and consequently facilitate their elimination and/or classification.

In [1, 2, 3] an image segmentation algorithm based on a Markov random field (MRF)
model was proposed. In this report the algorithm will be further analysed and applied
to additional data.

In Sect. 2 we briefly discuss the MRF algorithm. Section 3 shows the different
processing steps and the way in which we measure the performance. The results are
presented in Sect. 4. We end with conclusions and recommendations in Sect. 5.
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Markov random fields for active sonar

An MRF algorithm for segmentation of active sonar pictures was proposed [1] and
refined and evaluated on detection performance [2, 3|. In this section we describe

the algorithm.

Background (non-target like) pixels are labelled with a 0 and target-like returns with
a 1. The probability that a pixel in our image has a particular value A € {0,1} is
given as P(A = )), the so called a prior: probability.

We shall incorporate two basic assumptions into the model

i) that a pixel of a given type is surrounded by pixels of the same type (the usual
assumption for segmentation algorithms).

ii) that the background can be modelled as a Rayleigh distribution and that the
‘targets’ are non-Rayleigh. This will allow the introduction of the concept of
a conditional probability or threshold which separates the two distributions.

The Hammersly-Clifford theorem [4] allows us to express the global probabilistic
model in terms of a local energy model through the Gibbs distribution:

P(w) = %e‘U(w)/T, (1)

where Z = 3", (exp —U(w)/T) is called the partition function, T is constant called
the temperature, and U (w) is the energy function. Maximising the global probability
now corresponds to minimising the total energy.

The construction of the mazimum a posteriori (MAP) model is implemented by
using Bayes’ theorem. The mazimum a posteriori probability is given by [4],
Aopt = argmaxP(A = MNZ = 2)
AEQ
= arg r)x\lg.(}ch(Z =z|A = A)P(A=)) (2)

Where Z represents the observed value of the pixel, ;\opt is the optimal estimated
label for a particular pixel, P(Z = 2|A = M) is the conditional probability and
P(A = )) is the a priori probability.

This formulation allows us to write our problem as a well defined optimality criterion.
The optimisation is then performed in an iterative manner. For every pixel in the
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image the (locally) optimal label is determined. After several iterations the labelling
converges to the global optimum.

It is now necessary to introduce physical arguments to allow us to describe the terms
on the right hand side of the above equation. In the a prior: probability we allow
two forms of interaction: local, single pixel dependent terms, and a second order
contribution which encompasses an area around the pixel of interest. This second
order term is introduced as an Ising model [4] which acts as an homogenising force
which, physically, can be considered as stating that background pixels tend to be be
surrounded by background pixels. The first order term is introduced to reduce the
probability of small objects disappearing. The overall a prior:i energy terms can be
written then as

U(A=X) = —aln(c,) = BY_ (A, ), (3)

where o and 3 are user-defined homogenising parameters and ¢ is the Kronecker delta
operator. The summation is taken over an area surrounding the pixel of interest.
We have taken a window three pixels wide (equivalent to three beams) and 5 pixels
long (approximately 30 m for the datasets considered). The a priori energy can be
seen to decrease the overall energy as neighbouring pixels line up.

The homogenising constants are increased at every iteration. This allows acceleration
of regularisation without removing small objects too quickly, slowly moving from a
conditional probability dominant model to an a priori dominant model [5]. We
choose & = k@3, where k is a constant, and let § increase at every iteration from 0.5
in steps of 0.1 to 1.

If the pixel under investigation is a ‘0’ in the present iteration then ¢; = [pogd (As, 0)+
p106(Xs, 1)], where A, is the pixel value after the iteration and pio is the probability
of changing from a 0 to a 1. A similar expression exists if the present pixel value
is 1. N.B. ppo + p1o = 1 and po1 + p11 = 1. poo is a measure of the likelihood of a
background pixel staying a background pixel and is taken to be 0.5. p11 is a measure
of the likelihood of an object pixel staying as an object. Consequently, this should
be set high (typically greater than 0.8). Increasing p1; will increase the probability
of target detection, but also increase the probability of false alarm. We consider two
possible models [3], one with p;y fixed over all iterations and one in which after each
iteration we determine the maximum likelihood estimate p1; which maximises the
joint probability [ P(Ai;pi1)
711

ni1 +not’

(4)

P =

where n;; the number of transitions from label j to label ¢ and the product is taken
over the entire sonar picture. This estimate is then used for the following iteration.

The conditional probability is rather more easily defined [1]. The background and ob-
ject distributions are well separated (Fig. 1), so we consider a ‘conditional threshold’

-3-
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Figure 1 Histograms of background pizels and Page test detections. The solid lines
show a Rayleigh pdf and a noncentral Rayleigh pdf with 8.5 dB SNR.

2 and assign probabilities:

if 2<2z then P(Z=2A=0)=p (5)
andif 2>z then P(Z=2z2A=1)=q. (6)

From Fig. 1 we see that p and ¢ can be determined from the cumulative probability
densities (CDFs)[3]:

foZt fo(z)dz (7)
fozt (fo(z) + fi (z))dz
_ f;:o f1 (z)dz
T T @ + fi2)de

where fo(z) is the background pdf and fi(z) is the object pdf.

(8)

We model the object pdf with a noncentral Rayleigh distribution. Note that this is
just an approximation, the object pixels correspond to different returns with different
SNR. Even so the approximation is appropriate. A reasonable fit is a noncentral
Rayleigh pdf with 8.5 dB SNR, a good choice for the threshold is z; = 2. With
these distributions we get p = 0.8 and ¢ = 0.97. This is confirmed by the cumulative
histograms of the data
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Data processing

We show results for two data sets, taken south of Sicily. Data set 1 was taken in
September 1996 and uses a 2.29 s HFM pulse from 460 Hz to 565 Hz. Data set 2 was
taken in June 1995 and uses a 1.2 s HFM pulse from 470 Hz to 590 Hz. Assuming
750 m /s for the two-way sound speed this results in a range resolutions of respectively
about 7 and 6 m. Both data sets have around 170 pings with one or more target
detection opportunities. The target SNR varies from ping to ping but is, for most
pings, strong enough to produce a detection.

The processing steps are illustrated in Fig. 2.

The data were beamformed using 128 hydrophones at 1 m spacing using Hann shad-
ing over the array. The beams were equally spaced in cosine-space, and overlapped
3 dB down from their main response axis at 700 Hz. Data set 1 has 86 beams span-
ning from forward to aft endfire. Data set 2 has 34 beams encompassing 50° around
broadside.

Each beam was matched filtered and basebanded so that the centre of the waveform,
512.5 Hz for data set 1 and 530 Hz for data set 2, was shifted to zero Hz.

The beams were normalised using a split window trimmed-mean normaliser [6]. The
normalising window consisted of a window of about 1200 m around the sample to
be normalised. The samples in the normalising window were ordered and the lower
and upper quarter were removed. The remaining samples were used to estimate the
power in the auxiliary window. After normalisation the sample frequency is reduced
by taking the maximum sample in every range resolution cell resulting in a timeseries
with almost independent samples.

Under ideal normalisation the background will have a chi-squared distribution with
two degrees of freedom

1 _
pxg(z) =35° /2,

The MRF segmentation is initialised by the Page test detector [7] which is a sequen-
tial detection method. For chi-squared distributed data the Page test statistic is a
restricted cumulative sum

W, = max {0, W,,_1 + z, — b}

where b is the bias. The statistic Wj, is compared to a threshold h. A detection begins
when the threshold is exceeded and ends when it again falls under the threshold and
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Figure 2 Processing chain.

thus also measures the target extend. The threshold h depends on the sampling
frequency, i.e. doubling the sampling frequency requires a threshold about 3 dB
higher. The bias does not depend on the sampling frequency. The value of the bias
can be related to the expected SNR of the target [7].

For each ping a human operator has determined if it contains a target echo with at
least 10 dB SNR. The target is then represented by the range/bearing cell which
contains the maximum echo peak. This is taken as the ground truth knowledge.

The performance is evaluated after both the Page test detector and the MRF seg-
mentation. The performance measure uses the notion of objects, range/bearing cells
which are connected count as one object [8], i.e. all the returns, both over range and
beams, due to a single object are treated as one single entity. This procedure auto-
matically takes care of an object’s range extend and bearing extend, both physically
as well as due to the beampattern’s sidelobes.

After processing a target is said to be detected if the maximum echo peak falls within
an object and the object’s centre of gravity is inside the beam of the echo peak and
within 100 m range. The center of gravity is used to prevent very large objects from
being counted as valid target detections! as they would give no information on the
target’s position. The performance is shown by plotting the probability of detection
against the number of false alarm objects per ping. Note that this is not a ROC
curve, as the horizontal axis shows the number of false alarm objects per ping as
opposed to false alarm probability per detection bin.

1The unlikely case where the target is at the centre of the sonar screen and the object covers
the entire sonar screen could still be counted as a valid detection.
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4

Performance

4.1 Page test performance

Figures 3 and 4 show the Page test detection results. The different curves are for
different values of the Page test bias, the different values of the Page test threshold
are represented by the circles. From the figures it is clear that data set 2 possesses
stronger target echoes.

For low bias, the detection probability decreases because at too low bias, the Page
test detects most of the sonar picture producing large objects which are not counted
as valid target detections. When the bias is too big the detection probability drops.
The optimal bias seems to be 8 dB, which is used to initialise the MRF segmentation.

4.2 MRF Performance

Figures 5 and 6 show the MRF segmentation results for data set 1. The results for
the MRF model with fixed py; are shown in Fig. 5, while the results for the MRF
model with adaptive pi; are shown in Fig. 6. The dashed line shows the results for
the Page test detector with bias 8 dB, a threshold of 6 dB, indicated by the large
dot is used to initialise the MRF segmentation. The solid lines show the results for
the MRF segmentation, each line is for a different value of k£ = a/f, the symbols on
the line are for different values of py1. The results of the adaptive p11 model are not
very dependent on the choice for the initial value of py1, i.e. the results are more
robust than the results for fixed pii.

MRF segmentation does reduce the number of false alarm objects by 80% coupled
with a reduction in detection probability. Reducing the threshold for the Page test
detector, for fixed bias, also reduces the number of false alarm objects, with a smaller
reduction in detection probability. The MRF segmentation has about 5% to ™%
reduction in detection probability.

Figures 7 and 8 show the MRF segmentation results for data set 2. The results are
similar to data set 1. Again the results of the adaptive p11 model are more robust
than the results for fixed p11. The number of false alarm objects is reduced up to
86% compared to the Page test initialisation. Choosing the wrong segmentation
parameters can increase the number of false alarm objects.

For typical number of false alarm objects, the detection probability is reduced by
about 7% for data set 1 and 2% for data set 2 (Table 1).

-7 -
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Figure 3 Page detection performance curve for data set 1. The different curves
are for different values of the Page test bias, the different values of the Page test
threshold are represented by the circles.
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Figure 4 Page detection performance curve for data set 2. The curves are as in
Fig. 8.
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Figure 5 Performance of MRF model with fived p11 for data set 1. The dashed

’ line shows the results for the Page test detector with bias 8 dB, a threshold of 6 dB,
indicated by the big dot, is used to initialise the MRF segmentation. The full lines
. show the results for the MRF segmentation, each line is for a different value of

= /B, the symbols on the line are for different values of p1-
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Figure 6 Performance of MRF model with adaptive p11 for data set 1. The lines
’ and symbols are as in Fig. 5.
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Figure 7 Performance of MRF model with fized p11 for data set 2. The lines and
symbols are as in Fig. 5.
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Figure 8 Performance of MRF model with adaptive p11 for data set 2. The lines
and symbols are as in Fig. 5.

approx. FA | Page test | MRF fixed p;; | MRF adaptive p1;
data set 1 300 86% 79% 79%
data set 2 200 94% 92% 92%

Table 1 Comparison of detection probability between Page test detector and MREF
segmentation at typical fized number of false alarm objects.
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5

Conclusions

This report describes a segmentation algorithm based on a Markov random field
model using the Page test detector for initialisation. The algorithm was tested on
two data sets of about 170 pings each with one or two targets per ping.

For the single ping case, MRF segmentation has no advantage over the Page test
detector. MRF segmentation reduces the number of false alarms significantly, but so
does reduction of the Page test detector threshold, with a slightly better probability
of detection.

The Markov random field segmentation algorithm was designed to merge separate
returns from one geophysical object. Detecting large geophysical objects and a small
submarine are conflicting demands so it might be difficult to perform both with the
same algorithm. Markov random field segmentation still shows potential to detect
large geophysical objects which can be eliminated depending on unchanged geological
position over ping. In this case submarine detection probability is not relevant.

Traditionally a priori information for fixed feature removal is included through a
Kalman filter. MRF modelling is an alternative method by extending the range-
bearing information with information over ping. This will be studied in future work.
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